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This paper presents a problem-space genetic algorithm (PSGA)-based

technique for efficient matching and scheduling of an application program that

can be represented by a directed acyclic graph, onto a mixed-machine

distributed heterogeneous computing (DHC) system. PSGA is an evolutionary

technique that combines the search capability of genetic algorithms with a

known fast problem-specific heuristic to provide the best-possible solution to a

problem in an efficient manner as compared to other probabilistic techniques.

The goal of the algorithm is to reduce the overall completion time through

proper task matching, task scheduling, and inter-machine data transfer

scheduling in an integrated fashion. The algorithm is based on a new

evolutionary technique that embeds a known problem-specific fast heuristic

into genetic algorithms (GAs). The algorithm is robust in the sense that it

explores a large and complex solution space in smaller CPU time and uses less

memory space as compared to traditional GAs. Consequently, the proposed

technique schedules an application program with a comparable schedule

length in a very short CPU time, as compared to GA-based heuristics. The

paper includes a performance comparison showing the viability and

effectiveness of the proposed technique through comparison with existing

GA-based techniques. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

A mixed-machine distributed heterogeneous computing (DHC) system generally

consists of a heterogeneous suite of machines, high-speed networks, communication

protocols, operating systems, and programming environments [8, 16, 24, 28, 30, 32].

DHC is emerging as a cost-effective solution to high-performance computing as

opposed to expensive parallel machines. For effective utilization of a suite of diverse

machines in a DHC system, an application program can be partitioned into a set of

tasks (program segments) represented by an edge-weighted directed acyclic graph

(DAG), such that each task is computationally homogeneous and can be assigned to

the best-suited machine in the DHC system [24, 28, 30]. The matching and

scheduling problem is the assignment of the tasks of a DAG to a suite of

heterogeneous machines, sequencing the order of task execution for each machine

such that precedence relationships between the tasks are not violated, and

orchestrating inter-machine data transfers with the objective to minimize the total

completion time [6, 7, 9, 15, 19, 22–25, 28–32, 35]. In general, the problem of task

assignment and scheduling is known to be NP-complete [10]. Because of the

intractable nature of the matching and scheduling problem, new efficient techniques

are always desirable to obtain the best-possible solution within an acceptable CPU

time.

Genetic algorithms (GAs) [11, 13, 17, 21], well known for their robustness, are

probabilistic techniques that start from an initial population of randomly generated

potential solutions to a problem, and gradually evolve towards better solutions

through a repetitive application of genetic operators such as selection, crossover and

mutation. The evolution process proceeds through generations by allowing selected

members of the current population, chosen on the basis of some fitness criteria, to

combine through a crossover operator to produce offspring thus forming a new

population. The evolution process is repeated until certain criteria are met. GAs have

been applied successfully to solve scheduling problems in a variety of fields, such as,

job shop scheduling [4], sequence scheduling [33, 34], time-table problems [21],

schedule optimization [27], task scheduling and allocation onto homogeneous

multiprocessor systems [13, 17, 20], and task scheduling and matching in hetero-

geneous computing environments [23, 25, 30].

This paper proposes a technique based on a problem-space genetic algorithm

(PSGA) [5, 26], which performs task matching, task scheduling, and inter-machine

message scheduling in an integrated fashion. PSGA is an evolutionary technique that

combines the search capability of genetic algorithms with a known fast problem-

specific heuristic to provide the best-possible solution to a problem in an efficient

manner as compared to other probabilistic techniques.

In a PSGA [5, 26], the chromosome is based on the problem data and all the

genetic operators are applied in the problem space, so there is no need to modify
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genetic operators for each application. The solution is obtained by applying a simple

and fast known heuristic to map from problem-space to solution-space, where each

chromosome guides the heuristic to generate a different solution. Therefore, the

search can be conducted much more efficiently.

PSGA uses a fast heuristic to map from problem-space to solution space, therefore

it avoids disadvantages of other probabilistic approaches (such as local fine tuning in

the last stage of standard GAs) and moreover, PSGA has a fast convergence rate as

compared to the standard GAs [5]. PSGA-based techniques have been applied to

solve many resource constrained combinatorial optimization problems such as

datapath synthesis [5], static task assignment in homogeneous distributed computing

systems [2] and static task scheduling onto homogeneous multiprocessors without

considering the inter-processor communication cost [3].

The rest of the paper is organized as follows: Section 2 formulates the problem,

and Section 3 presents the related work. Section 4 explains the problem-space genetic

algorithm-based matching basic technique and the scheduling and assignment

algorithm. Section 5 provides the experimental results, and finally Section 6

concludes the paper with some final remarks and summarizing comments.

2. PROBLEM FORMULATION

In a DHC system, an application program is partitioned into a set of tasks

modeled by a DAG and can be represented as G ¼ ðT ;5;EÞ, where T ¼ fti; i ¼
1; . . . ; ng is a set of n tasks. 5 represents a partial order on T . For any two tasks

ti; tk 2 T , the existence of the partial order ti5tk means that task tk cannot be

scheduled until task ti has been completed, hence ti is a predecessor of tk and tk is a

successor of ti. E is the set of directed edges or arcs. A weight Di;k is associated with

each arc that represents the amount of data to be transferred from task ti to task tk in

bytes.

A mixed-machine distributed heterogeneous computing system consists of a set

H ¼ fHj : j ¼ 0; . . . ;m� 1g of m independent different types of machines (including

sequential and parallel computers) interconnected by a high-speed arbitrary

network. The bandwidth (data transfer rate) of the links between different machines

in a DHC system may be different depending on the kind of the network. The data

transfer rate is represented by an m� m matrix, Rm�m. The estimated computation

time (ECT) of a task ti on a machine Hj is denoted as ECTij, where 04i5n and

04j5m. The ECT value of a task may be different on different machines depending

on the machine’s computational capability. For static task scheduling, the ECT

value for each task–machine pair is assumed to be available a priori. An example of a

DAG consisting of seven tasks adopted from [30] is shown in Fig. 1(a) and a DHC

system consisting of fully connected three heterogeneous machines is shown in

Fig. 1(b). We assume that the data transfer rate for each link is 1.0, hence the arc

weight and the data transfer rate will be the same. The ECT value of each task on

different machines (H0–H2) for this example is given in Table 1.

Furthermore, we make the following assumptions:

* Each machine in the heterogeneous system can perform communication and
computation simultaneously.



FIG. 1. An example DAG and a mixed-machine DHC system.
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* Task execution can start only after all the data have been received from its
predecessors tasks.

* All machines and inter-machine networks are available for exclusive use of
the application program.

* Communication cost is zero when two tasks ti; tk are assigned to the same
machine, otherwise data have to be transferred from the machine on which task ti is
assigned to the machine where task tk is assigned. This data transfer incurs the
communication cost (CommCost) given by

CommCostðti; tkÞ ¼
Di;k

R½H ðiÞ;H ðkÞ

; ð1Þ

where Di;k is equal to the amount of data to be transferred from task ti to tk and
R½H ðiÞ;H ðkÞ
 represents bandwidth (data transfer rate) of the link between the
machines onto which tasks ti, and tk have been assigned.

The problem of static task matching and scheduling in a distributed heterogeneous

computing environment is a mapping p : T-H that assigns the set of tasks T onto a

set of heterogeneous machines H , determines the start and the finish times of each
TABLE 1

The ECT Values of the Tasks for the System of Fig. 1

Task H0 H1 H2

t1 872 898 708

t2 251 624 778

t3 542 786 23

t4 40 737 258

t5 742 247 535

t6 970 749 776

t7 457 451 15
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task, and determines the start and the finish times of each inter-machine data

transfer so that precedence constraints are maintained and the schedule length (SL)

that is, the overall program completion time, given by Eq. (2) is minimized.

SL ¼ maxfF0; F1; . . . ; Fm�1g; ð2Þ

where Fj is the overall finish time of machine Hj; j ¼ 0; . . . ;m� 1. The finish time

includes the computation time, the communication time and the waiting time

because of the precedence constraints. This is an intractable combinatorial

optimization problem with conflicting constraints.

3. RELATED WORK

Task matching and scheduling techniques [6, 7, 9, 15, 19, 22–32, 35] can be

categorized into optimal selection theory-based approaches [9, 31], graph-based

approaches [6, 22], genetic algorithm-based techniques [23, 25, 30] and other

heuristics [6, 7, 19, 29, 35]. Most of the work has been carried out to find a near-

optimal solution. We describe a levelized min-time (LMT) scheduling heuristic

presented in [15] and three evolutionary techniques based on genetic algorithms that

have been developed by Wang et al. [30], Singh et al. [25] and Shroff et al. [23].

Iverson et al. [15], proposed a two-phase approach called LMT heuristic to

account for both precedence constraints and variable execution times of each task on

different machines. During the first phase, the so-called level sorting is used to obtain

non-precedence constrained sub-tasks in each level. In the second stage, an

algorithm called Min-Time is applied for each level. In this stage for each task in

a level a search is carried out for a processor that does not have a task assigned to it

and the summation of task’s execution time and the transfer time taken by all the

required data for this task is minimum. The task is then assigned to that processor.

In [30], a GA-based approach is used to solve the optimization problem under

discussion. A pre-defined number of chromosomes were generated for the initial

population, which also includes a chromosome obtained by using the LMT heuristic

[15]. Each chromosome is represented by the two-tuple hmat; ssi, where mat is the

matching string and ss is the scheduling string. When generating a chromosome, a

new matching string is obtained by assigning each task to a machine randomly.

While for the scheduling string the SPDAG is first topologically sorted to form a

basic scheduling string, which later on is mutated a random number of times to

generate the ss vector. The standard GA approach as described in [11] is then used

for obtaining next generations. For small-scale problems, multiple optimal solutions

obtained in reasonable CPU time, but the CPU times taken by the large problems

are extremely large.

In [25], a search for a better set of parameters for the GA-based algorithm is

carried out. Each parameter is varied over some range, keeping other parameters

constant. The objective is to come up with such a parameter set for which the fitness

of the chromosome improves. Fitness of the chromosome in this case is defined as

the completion time of the last task. It is observed that window and linear scaling,



INTEGRATED TECHNIQUE FOR TASK MATCHING AND SCHEDULING 1343
tournament selection method, uniform crossover type enabled niching and elitism

and high crossover probability values are better than their counterparts.

In [23], a genetic simulated annealing (GSA) technique is used for task scheduling

in heterogeneous environments. GSA is a hybrid algorithm that is a combination of

GAs and simulated annealing (SA). In this technique, all the standard GA operators

such as generation of initial population, evaluation of the fitness, reproduction via

crossover and mutation, etc., were used except the selection operator for selecting the

mates for reproduction. For the selection operator, a SA approach was applied. The

fitness function is the reciprocal of the task completion time. If the child’s fitness is

better than its parent, it is selected. If the fitness is smaller than its parent there is still

a chance for its selection as a candidate for reproduction, depending upon a

probability value that in turn is a function of current temperature. As current

temperature decreases over time according to the schedule, the probability of

accepting less fit solutions also decreases, which helps the algorithm to converge. For

small-scale problems, optimal solutions are obtained. However, the CPU times taken

by large problems, like traditional GAs, are too large.

4. MATCHING AND SCHEDULING TECHNIQUE

Combinatorial optimization techniques, based on analogy to certain principles of

natural phenomena, have been successfully used in a variety of applications [12].

Evolutionary computation techniques or simply evolutionary techniques include:

GAs [11, 13], genetic programming (GP), evolution strategies (ES), simulated

evolution (SE) and evolutionary programming (EP). In general, the evolutionary

techniques roughly simulate the ‘‘theory of evolution’’ proposed by Darwin in the

19th century [12].

The PSGA [5, 26] is an evolutionary technique that is an embodiment of a genetic

algorithm and a problem-specific known fast heuristic. An outline of the proposed

algorithm is given in Fig. 2.

Briefly, the proposed technique can be divided into two phases. The first phase

(Steps 1–3) is an initialization phase. In this phase, first the DAG, ECT matrix, and

data transfer rate matrix are read. The user also provides the population size ðNpÞ,
number of generations ðNgÞ, probability of crossover ðXrÞ, and probability of

mutation ðMrÞ. The static b-level (bottom level) and static t-level (top level) of each

node in the DAG are calculated (see Section 4.1). Then, this phase involves the

coding of the chromosome based on static b-levels, formation of an initial population

by perturbing the gene values (priorities) in the first chromosome, application of the

decoding heuristic to obtain solutions (schedules), and application of the evaluate

function to calculate the objective value and the fitness of each chromosome in the

current population.

In the second phase, an iteration is carried out for function select for the selection

of parent chromosomes for reproduction, the crossover function and mutate function

to obtain offspring from the selected parents for the new generation, assignment of

the new population as the current population, application of decoding heuristic to

obtain solutions (schedules), and the application of the evaluate function to calculate



FIG. 2. The PSGA based task matching and scheduling algorithm.
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the fitness of each chromosome’s solution. The iteration terminates when the

stopping criterion is met (that is, a fixed number of generations have been evaluated).

The above procedure is elaborated with the help of an illustrated example (shown

in Fig. 1) in the following subsections.

4.1. Chromosomal Representation and Initial Population

One of the key differences between standard GAs and PSGA lies in the encoding

of chromosomes. A chromosome in traditional GAs [11] is often a string that

represents a valid solution to the problem to be solved. On the other hand, a

chromosome in the PSGA represents some attribute of the problem data. This

information is used by a problem-specific decoding heuristic to generate a solution to

the problem. Thus, the PSGA obtains a particular solution by applying the decoding

heuristic on a chromosome [26]. Each position of a chromosome is called a gene. In

the case of the matching and scheduling problem, a gene i in the chromosome

represents the priority of corresponding task ti. For the first chromosome, the

priority of a task (node) ti is its b-level. The b-level of a task (node) ti is the length of

the longest path from node ti to an exit node. The b-level of a node is bounded by the
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critical path of the DAG. The b-level is calculated by summation of two parameters

encountered on the path, that are each task’s average ECT value ðAvgECT Þ taken

over all machines and the communication cost ðCommCostÞ. A procedure for

calculating the b-levels is shown below:

Procedure b-levels( ):
Construct a reverse topological order list ðRevTopOrdListÞ of tasks.
for each task ti in the RevTopOrdList do begin

max ¼ 0;
for each child task tj of task ti do begin

if ðCommCostðti; tjÞ þ b-levelðtjÞ > maxÞ then
max ¼ CommCostðti; tjÞ þ b-level ðtjÞ;

endif;
endfor;
b-level ðtiÞ ¼ AvgECT ðtiÞ þ max;

endfor;

If a task has no children its b-level is equal to its AvgECT .

Another parameter called t-level for each task (node) is also calculated. The t-level

of a task ti is the length of the longest path between this node and an entry node in

the DAG excluding the ECT of ti. This level essentially determines the earliest start

time of a node. A task that has no parent will have t-level¼ 0. The procedure for

calculating the t-levels is given below:

Procedure t-levels( ):
Construct a topological order list ðTopOrdListÞ of tasks.
for each task ti in the TopOrdList do begin

max ¼ 0;
for each parent task tk of task ti do begin

if t-level ðtkÞ þ AvgECT ðtkÞ þ CommCostðtk ; tiÞ > max then
max ¼ t-level ðtkÞ þ AvgECT ðtkÞ þ CommCostðtk ; tiÞ;

endif;
endfor;
t-level ðtiÞ ¼ max;

endfor;

The average ECT value and the b-, t-levels (using the above procedures b-levels( )

and t-levels( )) for each task of the example DAG shown in Fig. 1 are given in Table

2. The AvgECT value of a task represents the average of the ECT values of a task

over all the three machines shown in Fig. 1. Note that the b-levels of tasks t6 and t7
are the same as the AvgECT values because these tasks have no children. The t-levels

of tasks t1 and t2 are 0 because these tasks have no parent (predecessors).

As described before, the gene value (that is, priority) of a task ti; ðGT1Þ
i in the first

chromosome is set to the b-level of a task ti. The gene values (priorities) of the rest of

the chromosomes (that is, chromosome 2 to Np) in the initial population are

generated by a random perturbation of the gene values of the first chromosome as

given below:

ðGTjÞ
i ¼ ðGT1Þ

i þ Uniformðt-level=2;�t-level=2Þ; ð3Þ



TABLE 2

The AvgECT b-level and t-level of Each Task for the DAG Shown in Fig. 1

Task AvgECT b-level t-level

t1 826.0 3767.0 0.0

t2 551.0 3189.0 0.0

t3 450.33 2594.0 1173.0

t4 344.67 957.33 2212.33

t5 508.0 1554.67 2212.33

t6 831.67 831.67 2212.33

t7 337.67 337.67 3429.33
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where ðGTlÞ
i is the priority of a task ti in the first chromosome, i ¼ 1; . . . ; n. Uniform

(t-level=2;�t-level=2) is a random number generated uniformly between t-level=2,

and �ðt-level=2Þ, and j ¼ 2; . . . ;Np.

Using the above rules, an initial population of size six for the DAG of Fig. 1(a) is

shown in Fig. 3. Here, each chromosome has a different priority value for each task

in different chromosomes. So each chromosome guides the heuristic to generate a

different solution to the problem, which in this case will be a different schedule. Note

that since the t-levels of tasks t1 and t2 for the example DAG are 0, there is no

perturbation in the priorities of these tasks. Thus, the priorities (gene values) of these

two tasks for the example DAG remain the same for all the chromosomes in the

initial population.
FIG. 3. An initial population of six chromosomes.
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4.2. Decoding Heuristic

One of the key factors in the success of the proposed technique is the embedding of

a known problem-specific fast heuristic into the GA search. We use list scheduling [1,

14, 18] with two different policies, earliest finish time and earliest start time, to design

two different decoding heuristics.

4.2.1. Earliest finish time heuristic. The earliest finish time ðEFT Þ heuristic

schedules a candidate task onto a machine on which the finish time of the task is the

earliest. The objective is to generate a matching and schedule from a given

chromosome having a minimum schedule length. Pseudocode for the decoding

heuristic is given in Fig. 4. In this heuristic, we build a task list, in which the tasks are

arranged in a descending order according to their priorities in the chromosome. If

there are two tasks with the same priority, then the task with smaller number is

placed first. A ready list is then initialized with tasks that have no predecessor. The

task ti from the ready list with the highest priority is selected, and scheduled to the

most suitable machine Hj on which the finish time of the task is the earliest. Machine

Hj is selected to be a candidate for matching the task ti, and determines the start time

of this task onto machine Hj by taking into account data available time and machine

ready time. The data available time is the maximum communication time when the

data of all the immediate predecessors of the ti are available at machine Hj. Then the

algorithm determines the finish time of task ti on the candidate machine by summing

the start time and the ECT of the task–machine pair. In case the finish time of a task

on two machines is the same, the algorithm breaks the tie by matching and

scheduling the task to the first machine in the sequence. Task ti is then deleted from

the ready list. The heuristic repeats the matching and scheduling with updates to the

ready list, until the list becomes empty and all the tasks are scheduled.

By applying the EFT heuristic to each chromosome in the population, we can

generate a different solution (schedule) corresponding to each chromosome. The

solution generated for the first chromosome is shown in Fig. 5.
FIG. 4. Pseudocode for EFT heuristic.



FIG. 5. Matching and schedule corresponding to the first chromosome ðSL ¼ 2069Þ.
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4.2.2. Earliest start time heuristic. We also embedded the earliest start time

ðEST Þ heuristic into our PSGA scheduler. The difference between this heuristic and

the EFT heuristic described above is in the matching and scheduling policy. In this

heuristic, a task ti is assigned and scheduled onto a machine Hj for which the task’s

start time is the earliest. This heuristic works well for task assignment and scheduling

in homogeneous multiprocessor systems. However, simulation results (see Section 5)

show that this heuristic performs poorly as compared to the EFT heuristic in

heterogeneous computing environment. The reason behind this relatively poor
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performance is that it cannot take into account the fact that in DHC the ECT values

of a task are different on different machines.

4.3. Objective and Fitness Evaluation

We use the schedule length as the objective function for evaluating the schedules

corresponding to each chromosome. However, its value may vary from problem to

problem. To maintain uniformity over various problem domains, we use the fitness

to normalize the objective function values to a convenient range of 0 to 1. The

following objective-to-fitness mapping function [11] was used:

f ðiÞ ¼
SLðMÞ � SLðiÞ

Pj¼Np

j¼1 ½SLðMÞ � SLðjÞ

; ð4Þ

where f ðiÞ is the fitness of chromosome i; SLðMÞ is the maximum schedule length of

a solution corresponding to a chromosome in the current population, SLðiÞ is the

schedule length corresponding to chromosome i, and Np is the population size.

4.4. Selection, Crossover, and Mutation

PSGA combines the exploitation of the past results by selecting parent

chromosomes for reproduction based on their fitness with the exploration of new

areas in the search space via crossover and mutation. Chromosomes with higher

fitness values have a higher probability of contributing one or more offspring in the

next generation. This method is a simulated version of the natural selection, a

Darwinian survival of the fittest theory [11]. A biased roulette wheel, where each

chromosome in the population has a slot sized in proportion to its fitness, performs

the selection method. Each time we require an offspring, a simple spin of the

weighted roulette wheel yields a parent chromosome. In this method, a random

number u is generated between 0 and the sum of the fitness. A population member j
whose running sum of the fitness is greater than or equal to u is selected as a

candidate for reproduction. GA-based techniques use many other selection methods

such as tournament selection, simulated-annealing selection, etc., but a simple

roulette-wheel selection method works well in PSGA.

In natural genetics, at the cellular level, a pair of chromosomes strike into one

another, exchange chunks of genetic information and drift apart. In GAs this is

generally referred to as crossover because of the way that genetic material crosses

over from one chromosome to another. Crossover incorporates attributes of two

parents into a new individual. We apply a 2-point crossover operator to the priority

of the chromosome. Since a chromosome is based on the problem data and has to be

decoded using an underlying heuristic, it always generates a feasible solution. The

crossover is applied with a certain crossover rate ðXrÞ which is the ratio of the

number of offspring produced by crossover in each generation to the population size.

It controls the amount of crossover being applied. In a 2-point crossover operator,

two cross sites are selected randomly and the values of the priorities between the

cross sites are swapped among the two mating chromosomes.
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Mutation is a background operator that is used for finding new points in the

search space so that population diversity can be maintained. Mutation is done by

selecting a gene at random with a probability Mr and perturbing its value in the range

�ðt-level=2Þ to t-level=2, where t-level is the t-level of the selected node in the DAG.

After perturbation if the priority value becomes more than b-levelþ t-level of the

node, then the priority is assigned the value b-levelþ t-level. If the priority value

becomes less than b-level, it is assigned the value b-level. The objective is to explore

a wider space of priorities, but within the proximity of the original problem.

4.5. Termination Criteria

The algorithm maintains the best solution found so far in the database since

elitism is incorporated. The algorithm terminates when Ng generations are

completed. We use a fixed number of generations as the stopping criterion because

the proposed technique incorporates a problem-specific fast heuristic and it can

search the design space in a small number of evaluations ðNpNgÞ. The result obtained

by applying the heuristic to the first chromosome is fairly good. By applying this

heuristic to a new set of problem data differing slightly from the original problem for

a fixed number of times results in the best solution. The value of Ng is determined

experimentally by running a large number of simulation tests.

Figure 6 depicts the best matching and the corresponding schedule obtained by the

proposed technique for the example task graph (Fig. 1). The best schedule length

obtained by the proposed PSGA was 2018 as compared to the schedule length

ðSL ¼ 2069Þ obtained from the first chromosome of the first generation.

5. EXPERIMENTAL RESULTS

We implemented the proposed PSGA-based integrated technique for static task

matching and scheduling onto a mixed-machine DHC system on a SUN

SPARCstation 20. There are no common benchmark application programs for

heterogeneous computing environments. Therefore, in order to test our system and

compare its results with the published work, we requested the researchers who have

published GA-based schedulers for heterogeneous computing environments [23, 30]

for test graphs. Shroff et al. [23] provided us the source code written for their GSA

scheduler. Their scheduler also includes a random test graph generation allowing the

user to generate a variety of test graphs, with different numbers of nodes, their

associated ECTs, and data transfer rate matrices. Wang et al. [30] also provided a

task-graph generation program that has been used for their GA-based matching and

scheduling technique. Performance of the proposed technique is compared with

Wang et al. [30], GSA [23], and LMT [15] by running a number of simulation tests.

Simulation tests are organized in five major test suites. In test suite 1, we evaluate

the performance of the proposed technique with a set of directed acyclic graph

structures of well-known applications and with a set of randomly generated graphs.

Test suite 2 includes small-scale performance simulation tests to compare with the

work of in [30]. Test suites 3 and 4 include large-scale simulation tests to compare

with GSA [23] and LMT [15], respectively. Test suite 5 includes simulation tests
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carried out to demonstrate the effect of embedding different heuristics in PSGA. For

all the test suites, the results obtained by the PSGA used fixed values of the input

parameters ðXr ¼ 0:6, Mr ¼ 0:05, Np ¼ 60, and Ng ¼ 100). Moreover, for each test

the PSGA was run 10 times. Details of each test suite are given below:

Test suite 1: In this test suite, we evaluate the performance of the proposed

PSGA-based technique for different types of DAGs. First, a set of graphs

representing practical applications such as Out-Tree (OT), Fork-Join (FJ), Laplace

equation solver (LAPLACE), and LU decomposition were used as input to the

PSGA. The ECT values for these graphs were generated randomly for DHC systems

consisting of four and eight machines. The performance of the proposed techniques

with respect to the quality of schedule length due to the first chromosome ðSL1Þ and

the best SL when the termination criterion is satisfied is given in Table 3 (here n is the

number of tasks and m is the number of machines). There was 7.95% average



TABLE 3

Comparison of SL1 (Schedule Length When EFT Heuristic Is Applied to the First

Chromosome) and the Best SL for the Proposed Technique for a Set of Test Graphs Representing

Practical Applications onto DHC Systems Consisting of Four and Eight Machines

DAG n m SL1 SL CPU time

structure (s)

OT 50 4 455 405 22

100 8 562 501 80

FJ 50 4 1276 1175 29

100 8 2251 2123 109

LAPLACE 49 4 2957 2787 29

100 4 6892 6313 95

100 8 5991 5678 110

LU 35 4 810 759 7

35 8 769 656 10

54 8 2177 1962 41
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improvement in the SL over SL1 for all of these tests. The CPU time to run these

simulations on SPARCStation 20 was in the range of 7–110 s.

The second set of graphs (in the range of 20–200 tasks and for DHC systems

consisting of up 20 heterogeneous machines) generated by using the graph generator

in [30]. Using this set, we evaluate the performance of the proposed PSGA-based

technique from three different perspectives. First, we show the performance with

respect to quality of schedule length due to the first chromosome ðSL1Þ and the best

SL when the termination criterion is satisfied. For this purpose, we have run 11 tests

ranging from DAGs consisting of 7–200 tasks and the DHC systems consisting of 3–

20 machines. The results of these tests are shown in Table 4. There was 21.2%

average improvement in the SL over SL1 for all of these tests. The CPU time to run

these simulations on SPARCStation 20 was in the range of 2–789 s.

The amount of improvement over the schedule length can be obtained due to first

chromosome, actually depends on the structure of the tasks graphs and ECT values.

The PSGA approach is based on an entirely different neighborhood structure and

presumes that the base heuristic yields reasonably good solutions to the problem at

hand. If this heuristic is applied to a new set of problem data differing only slightly

from the original problem, the resultant solution should also be a reasonably good

solution to the original problem. Thus, if one applies the base heuristic to the

problem data in the neighborhood of the original, one expects to generate a set of

good solutions. Since good solutions tend to be clustered near the original problem,

the search can be more effective and the best-possible solution could be found with

smaller population size and generation size as compared to the standard GAs [11].

Next, we investigate the effect on the CPU time spent by the proposed scheduler

by fixing the DAG size and by varying the number of machines. The results of this

experiment for a DAG of 60 and 100 tasks on 2-; 4-; . . . ; 20-machine DHC systems

are plotted in Fig. 7. It is evident that the CPU time varies almost linearly with the

increase in the number of machines. In the third phase of this experiment, we assume



TABLE 4

Comparison of SL1 (Schedule Length When EFT Heuristic Is Applied to the First

Chromosome) and the Best SL for the Proposed Technique for a Set of Test Graphs onto

DHC Systems Consisting of Different Numbers of Machines

n m SL1 SL CPU time

(s)

7 3 1025 589 2

10 3 2203 1825 3

16 6 1936 1476 6

40 20 2971 2406 48

60 8 3999 3257 58

80 8 3975 3110 85

100 8 4478 3806 126

120 20 4048 3404 302

140 20 5060 3631 411

160 20 4783 4041 516

200 20 6269 4561 789
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a DHC system consisting of a fixed number of machines and investigate the change

in CPU time by increasing the size of DAG. We carried out one test for an 8-machine

DHC system and another for a 16-machine DHC system. The results showing the

CPU time versus the number of tasks in the DAG are plotted in Fig. 8. Note the

CPU time varies polynomially with the increase in the number of tasks.

Test suite 2: This test suite consists of three small-scale performance simulation

tests. We generated a 7-node task graph for the first test and a 10-node task for the

second and third test using Wang’s graph generator program [30]. Simulations were

carried out on a 3-machine DHC system. Although no reported schedule lengths for

these task graphs are available, the CPU time reported by Wang et al. [30] for a

similar small-scale test, consisting of 10 tasks onto a 3-machine DHC system, was in

the range of 60 s on a Sun SPARCstation 5. The PSGA however, completes the

execution in less than 2:5 s.
FIG. 7. The CPU time versus the number of machines for fixed size DAGs.



FIG. 8. The CPU time versus the number of tasks for fixed number of machines.
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Test suite 3: For this suite, a large set of test graphs, their associated ECTs, and

rate matrices were generated by using the DAG-generator portion of the GSA

scheduler [23]. For both PSGA and GSA, values of 0.6 and 0.05 are used for Xr and

Mr, respectively. However, Np is selected as 60 and 256 for PSGA and GSA,

respectively. The number of generations ðNg) is kept constant at a value of 100 for

PSGA, while for GSA it starts from 150 and is increased as the problem size

increases (as shown in Table 5). The reason is that the GSA uses blind search, and,

therefore, needs a larger population size and number of generations to converge with

a good solution quality. Different graphs were generated by varying the

computation-to-communication ratio (CCR), that can be defined as the ratio of

the time needed to execute the task to the time needed to transfer the data. CCR is

considered as small, medium and large when 0:0125CCR50:5; 15CCR550 and

505CCR5350, respectively. Both the proposed technique and GSA were run on a

SPARCstation 20 for all of these test graphs. Table 5 shows the comparison of

results.

The CPU time required to solve a DAG of 30 tasks on 12 machines by the GSA

[23] was 81858 s, whereas the CPU time taken by PSGA was 47 s.

We have computed the average of schedule lengths obtained by PSGA and GSA,

for all tests shown in Table 5. By considering PSGA’s average schedule length as

unity, we calculated the relative solution quality of GSA by dividing the average

schedule length of PSGA with the average schedule length of GSA. Similarly, we

have calculated the average CPU time spent by PSGA and GSA for all the test

graphs and then obtained the relative CPU time. The comparison of results is shown

in Table 6 where it is clear that the quality of results (schedule lengths) generated by

PSGA is comparable to that of GSA; on the average, PSGA is 1366 times faster than

the GSA. The reason for this large difference in CPU times is because of two factors:

(1) GSA has used simulated annealing as a selection operator that slows down it

further than standard GAs [11], and (2) PSGA embeds a problem-specific heuristic in

the genetic algorithm, and, therefore, it converges in a smaller number of generations

and with smaller population size. The CPU time spent by the GSA [23] is extremely

large, and therefore, it does not perform well for large DAGs.



TABLE 5

Comparison of Results for GSA and PSGA for Test Suite 3

PSGA GSA [23]

CCR n m SL CPU SL CPU Ng

time (s) time (s)

Medium 12 5 193.1 4 193.1 7420 150

15 3 285.2 7 285.2 7733 150

15 5 199 8 199 7080 150

16 6 189.5 11 189.5 23,501 300

18 7 122.1 12 120.6 19,021 300

20 6 250 15 250 26,364 200

20 8 270.4 17 270.4 24,079 200

22 8 241.1 20 240.8 38,518 300

24 11 243.7 27 242.2 33,242 300

25 8 316.4 25 314.7 46,548 250

25 10 281.2 32 278.9 33,669 250

26 13 290 37 290 62,233 300

28 16 241.8 48 240 68,901 300

30 9 326.7 37 326.7 55,411 300

30 12 271.4 48 268.1 80,612 300

Large 15 5 1622 8 1622 6793 150

20 8 2904.1 16 2904.1 21,690 200

25 10 2996.9 31 2996.9 32,200 250

30 12 3212.5 47 3212.5 81,858 300

Small 20 8 1141.6 22 1087.9 24,392 200

25 10 1521.2 36 1625.2 45,818 250

30 12 1695.2 71 1738.1 60,752 300

Unity 13 6 112.4 7 112.9 5480 150

15 5 127.9 8 114.4 6904 150

20 8 185.4 19 180.4 15,922 200

25 10 213.5 29 207.6 40,794 250
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Test suite 4: In this test suite, Wang’s graph generator program [30] is used to

generate large task graphs of size up to 200 nodes and for DHC systems consisting of

up to 20 heterogeneous machines. For simulations, three different DHC systems

consisting of four, eight, and 20 machines were selected. Three task graphs of the
TABLE 6

Average Performance Measures for All Test Graphs in Suite 3, When Normalized with

Respect to PSGA

PSGA GSA

Relative solution quality 1 0.997

Relative CPU time 1 1366



TABLE 7

Comparison of SL Obtained by PSGA and LMT for DAGs Ranging from 20 to 200 Tasks

and on the DHC System Consisting of Four Machines

Light comm. Medium comm. Heavy comm.

n LMT PSGA LMT PSGA LMT PSGA

SL SL SL SL SL SL

20 2545 958 3306 1997 2741 1489

40 5494 2308 8260 3419 7062 2652

60 8289 2980 10,405 4002 9136 4031

80 11,163 3842 16,667 5423 12,282 4982

100 15,525 5047 16,257 6383 19,696 7571

120 16,032 6641 23,093 9293 22,066 8406

140 20,521 8102 23,733 9972 25,121 9769

160 25,401 9858 25,638 10,957 29,441 10,380

180 27,972 11,596 31,987 11,713 32,072 11,707

200 27,793 12,477 35,887 12,580 37,545 14,574
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same size but with different numbers of edges were generated. Such task graphs are

termed as light-communicating (light comm), medium-communicating (medium

comm) and heavy-communicating (heavy comm) task graphs, when

05jEj51
3
n; 1

3
n5jEj52

3
n, and 2

3
n5jEj5n, respectively; where jEj is the number of

edges and n is the number of nodes of a task graph. For each of the three DHC

systems (four, eight, and 20 machines), task graphs of different sizes were generated.

For each size (e.g., 20 nodes), three task graphs with different numbers of edges were

generated. Results were then obtained for both PSGA and LMT [15], Using these

graphs as input.

Table 7 provides the comparison of schedule length (SL) for all of these graphs

obtained by PSGA and LMT for a 4-machine DHC system. The results indicate that

the solution quality in terms of SL obtained by LMT is poor in comparison with the

SL obtained by the PSGA. For example, for the DAG consisting of 200 tasks with

light communication, the SL obtained by LMT is 27793, while the SL obtained by

PSGA is 12,477. Similarly, the results for other DAGs show a large difference

between the solution obtained by the LMT and the PSGA.

To make the comparison easy, the solution quality of LMT is assumed to be 1.0,

and the relative solution quality of PSGA, as compared to LMT, is calculated by

dividing the schedule length generated by LMT with the schedule length generated

by the PSGA. Figure 9 shows the comparison of the relative solution quality for the

4-machine DHC system. Each group of four columns in Fig. 9 corresponds to the

results obtained for three graphs with different numbers of edges, therefore, different

communication patterns, for a particular sized graph (fixed number of nodes). As

relative solution quality (schedule length) of LMT is always taken as unity, only one

column for all three task graphs is shown for LMT.

Similarly, the comparisons of relative solution qualities for 8- and 20-machine

DHC systems, by using task graphs of different sizes and various communication



FIG. 9. Comparison of relative solution quality of PSGA and LMT for a set of test graphs, each with

three different communication patterns (i.e., light, medium and heavy communication) for a 4-machine

DHC system.

INTEGRATED TECHNIQUE FOR TASK MATCHING AND SCHEDULING 1357
patterns, are shown in Figs. 10 and 11, respectively. We observe that the CPU time

taken by the LMT heuristic is in the range of 0.5–2:0 s while the CPU time taken by

PSGA is in the range of 5.0–789 s. However, in every case PSGA outperforms LMT

in terms of the solution quality (that is, schedule length). Even though LMT is a fast

heuristic, it may not be a practical approach due to its poor solution quality in term

of schedule length.

Test suite 5: As the PSGA-based task scheduling technique embeds a problem-

specific fast heuristic in a genetic algorithm, therefore, in this test suite we

demonstrate the effect of embedding different heuristics. Task graphs, their

associated ECTs and data transfer rate matrices for a 16-machine DHC system

were generated by using Wang’s graph generator program. We compared the

performance of PSGA by embedding in it the EST and EFT as decoding heuristic,
FIG. 10. Comparison of relative solution quality of PSGA and LMT for a set of test graphs, each with

three different communication patterns (i.e., light, medium and heavy communication) for an 8-machine

DHC system.



FIG. 11. Comparison of relative solution quality of PSGA and LMT for a set of test graphs, each with

three different communication patterns (i.e., light, medium and heavy communication) for a 20-machine

DHC system.
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alternatively. Figure 12 shows the comparison of relative solution quality for the 16-

machine DHC system. Each column in the figure corresponds to the average taken

over light-, medium- and heavy-communication cases, generated for a same-size task

graph. It is clear from the results that EFT as decoding heuristic outperforms EST.

6. CONCLUSIONS

In DHC systems, proper matching of tasks among machines, determination of

their execution orders, and data transfer schedules are important factors for utilizing

diverse available resources efficiently. In this paper, we presented a problem-space

genetic algorithm-based integrated technique for the static task matching and

scheduling problem for distributed heterogeneous computing systems including the
FIG. 12. The relative performance of the EST heuristic versus the EFT heuristic, when embedded in

PSGA for a 16-machine DHC system.
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communication delays, with the objectives to reduce the schedule length. The

proposed technique is an embodiment of a genetic algorithm and a heuristic, which

uses a different neighborhood structure to search a large solution space in an

intelligent way in order to find the best possible solution within an acceptable CPU

time. Simulation tests demonstrate the viability of the proposed technique that

performs better as compared to the existing approaches.
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